In recent years, the development of bridge slabs with high strength and durability as well as low maintenance costs instead of the ordinary reinforced concrete slabs tends to be required strongly by several administrators. On the recent studies, the composite slabs tend to be attracted attention as the slabs that satisfy these requirements.

This paper reports push-out tests of large size Truss-typed Shear Connectors that intends to be applied to the long-span slabs. Principal results and conclusions are as follows,

1. Large size Truss-typed Shear Connectors has high proof and ultimate strength for transverse push-out loading as well as longitudinal one.

2. In case Truss-typed Shear Connectors are welded on the bottom plate of 6mm thickness, the strength for push-out tests is as high as the push-out test results of the connectors on H-steel of which flange thickness is 15mm.

3. As to shear spring constants for the proof strength, the constants of the connectors on the bottom plates of 6mm thickness are reduced to the about 70～85% of constants for the ones on H-steel.

Key Words: large size Truss-typed Shear Connectors, push-out test

1. はじめに

最近、鋼とコンクリートを合成・一体化した構造物が、種々の分野で利用されてきている。これらの合成構造は、建設費の縮減や耐久性向上などの観点から着目されており、それらの合成構造の一つとして合成床版があげられる。鋼構における、合理化・省力化や耐久性の観点から少主桁構の等の合理化構架の建設が進められている。この種の構造床版には耐久性のある長支間床版の適用が不可欠であり、最近の研究1)～4)により合成床版がこの要求を満たす床版として注目されている。著者らはこれらの要求を満たす床版として、図1に示すようなトラス型ジベル合成床版を開発し、ジベルの押しききさせん断実験をはじめ、各種の静的実験および動荷重走行実験を実施5)～13)した。ここ数年は合成床版の採用が増加してきており、広幅員の構梁計画の中には、さらに床版支間の長大化（8m～10m級）を図った合成床版が計画されつつある。これらに対応するとともに構造の合理化を図るには、部材断面の大型化が必然となるため、一連の機能検証実験を実施することとした。この内、まず要素実験として大型のトラス型ジベルを用いた押し抜きせん
を用いた。鋼材の規格および材料試験結果を表-1に、コンクリートの種別および配合を表-2および表-3に示す。なお、実験時のコンクリート強度は、制御実験の開始から終了までで32N/mm²〜37N/mm²の範囲にあった。

(2) 押し抜きせん断実験供試体
トラス型ジベルの押し抜きせん断実験に関しては、既往の研究(4)(5)として、図-2に示すように、9種類の押し抜きせん断実験を実施した。

表-1 鋼材の規格および材料試験結果

<table>
<thead>
<tr>
<th>鋼材</th>
<th>撮影機</th>
<th>撮影機</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>呼び径</td>
<td>拡大倍率</td>
</tr>
<tr>
<td></td>
<td>(寸法)</td>
<td>N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/mm²</td>
</tr>
<tr>
<td>SD345</td>
<td>D18</td>
<td>345〜440</td>
</tr>
<tr>
<td></td>
<td>D22</td>
<td>440以上</td>
</tr>
<tr>
<td>SS400</td>
<td>FB-75x9</td>
<td>400〜510</td>
</tr>
<tr>
<td></td>
<td>FB-50x6</td>
<td>510以上</td>
</tr>
</tbody>
</table>

表-2 コンクリートの種別

<table>
<thead>
<tr>
<th>標準強度 (N/mm²)</th>
<th>等級材</th>
<th>最大寸法 (mm)</th>
<th>スランプ (mm)</th>
<th>空気量 (%)</th>
<th>コンクリートの配合</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>早凝ポルトルインドセメント</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>80±5</td>
<td>4.5±1.5</td>
<td>早凝ポルトルインドセメント</td>
<td></td>
</tr>
</tbody>
</table>

表-3 コンクリートの配合

<table>
<thead>
<tr>
<th>単位セメント量 (kg/m³)</th>
<th>単位水量 (kg/m³)</th>
<th>単位粗骨材量 (kg/m³)</th>
<th>単位細骨材量 (kg/m³)</th>
<th>混和剤の種類</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>165</td>
<td>734</td>
<td>1058</td>
<td>AE減水剤</td>
</tr>
</tbody>
</table>

表-4 押し抜きせん断実験供試体の種類

<table>
<thead>
<tr>
<th>シリーズ</th>
<th>供試体No.</th>
<th>ジベルサイズ</th>
<th>ジベル溶接長 (B/mm)</th>
<th>すみ肉溶接サイズ (S/mm)</th>
<th>溶接繰数 (1供試体)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A1</td>
<td>FB50x6</td>
<td>60</td>
<td>5</td>
<td>4</td>
<td>1ジベルの押し抜きせん断特性</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>FB50x8</td>
<td>75</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>FB75x6</td>
<td>75</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td>FB75x9</td>
<td>75</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A5-1</td>
<td>FB75x9</td>
<td>90</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A5-2</td>
<td>FB75x9</td>
<td>90</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>FB75x9</td>
<td>100</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A7</td>
<td>FB75x9</td>
<td>90</td>
<td>7</td>
<td>8</td>
<td>2ジベル直列配置の押し抜きせん断特性</td>
</tr>
<tr>
<td>B</td>
<td>B1</td>
<td>FB50x8</td>
<td>60</td>
<td>5</td>
<td>4</td>
<td>ジベル方向に直交する方向の押し抜きせん断特性</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>FB75x9</td>
<td>90</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C1</td>
<td>FB50x6</td>
<td>60</td>
<td>5</td>
<td>4</td>
<td>ジベルを溶接する底鋼板(0.8mm)の板厚の影響を受ける押し抜きせん断特性</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>FB75x9</td>
<td>90</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

注) 表中の供試体は、3供試体とする。ただし、A5-1供試体は2体、A5-2供試体は1体とする。
3. 実験結果と考察

(1) 荷重−変位−残留すの関係
供試体A1の荷重−変位−残留すの関係を図-4に示す。供試体A1は既往の研究④、⑤とのキャリプレーションを目的としており、降伏せん断耐力、最大せん断耐力、水平せん断パネ定数および破壊形態を比較した。この結果、いずれも比較的よい一致を示しており、今回実験との整合性が確認できた。

(2) 降伏せん断耐力、最大せん断耐力および水平せん断パネ定数
今回の押し抜きせん断実験結果を表-2に示す。破壊形態は、写真-1に示すように、いずれも溶接部の破断である。

直列配置されたジベルの影響を検討したケースとして、1ジベル配置（供試体A5-2）と2ジベル直列配置（供試体A7）を比較する。これより、2ジベル直列配置の方が1ジベル配置より、降伏せん断耐力で15％、最大せん断耐力で13％、水平せん断パネ定数で6％それぞれ大きい。これは、直列に配置されたジベルに囲まれたコンクリートのコンファイン効果により、耐力およびパネ定数が増加したものと考えられる。ただし、供試体A5-2の降伏せん断耐力に関しては、前後の供試体（供試体A4、

写真-1 ジベル溶接部の破断状況（供試体A5-1）
表-2 トランスジベル形状と、降伏せん断耐力、破壊荷重および水平せん断パネ定数との関係

シリーズ	鈑厚 (W/mm)	鈑厚 (B/mm)	溶接長 (S/mm)	降伏せん断耐力 (kN/ジベル)	最大せん断耐力 (kN/ジベル)	水平せん断パネ定数 (kN/mmジベル)	破壊態
A1	50	6	60	131	222	756	溶接
A2	50	6	75	139	225	794	溶接
A3	75	6	75	174	327	1111	溶接
A4	75	9	75	222	368	1290	溶接
A5-1	75	9	90	248	415	1176	溶接
A5-2	75	9	90	227	464	1402	溶接
A6	75	9	100	262	503	1259	溶接
A7	75	9	90	261	524	1485	溶接
B1	50	6	60	119	238	765	溶接
B2	75	9	90	251	461	1146	溶接
C1	50	6	60	154	215	646	溶接
C2	75	9	90	280	477	947	溶接

注文中の耐力およびパネ定数は各地の平均値を示す。

A5-1, A6) の実験結果から推定される値より、やや低めの実験結果となっており、供試体の個体差の影響があると考えられる。

ジベル方向の押し抜きせん断とジベル直角方向の押し抜きせん断特性とを検討したケースとして、A シリーズ（供試体A1, A5-2）と B シリーズ（供試体B1, B2）とを比較する。供試体A1と供試体B1において、供試体A1は供試体A1より、降伏せん断耐力で9%低く、最大せん断耐力で7%高いが、水平せん断パネ定数は同程度である。また、供試体A5-2と供試体B2においては、供試体B2が供試体A5-2より、降伏せん断耐力で11%高く、最大せん断耐力は同程度であり、パネ定数で18%高い結果となった。これらより、ジベル方向押し抜きせん断とジベル直角方向押し抜きせん断とでは、それぞれの特性値に明確な傾向は認められず、これからの特性値の差違も比較的小さいことから、版としての主筋方向および配筋方向のいずれよりも特性は同等に挙げてよいと思われる。

ジベルを溶接する底鋼板の板厚の影響を検討したケースとして、A シリーズ（供試体A1, A5-2）と C シリーズ（C1, C2）とを比較する。供試体A1と供試体C1において、供試体C1が供試体A1より、降伏せん断耐力で18%高く、パネ定数で15%高いことがわかった。また、供試体A5-2と供試体C2において、供試体C2が供試体A5-2より、降伏せん断耐力で23%高く、パネ定数で32%低いことがわかった。これらより、合成床版の底鋼板に一般に用いられる板厚（1.6mm）を用いた押し抜きせん断実験結果は、H 型鋼を用いた標準的な押し抜きせん断実験結果に比べて、降伏せん断耐力で20%程度高く、パネ定数で15～30%程度低いことがわかった。これは、ジベル溶接の底鋼板の板厚が薄い、ジベル溶接部で底鋼板が局部的な板曲げを受けて微小な歪が発生するため、パネ定数が低下したものと思われる。しかし、今回の実験の範囲では、降伏せん断耐力に注意すると、底鋼板厚（1.6mm）を再現したCシリーズ供試体は、H型鋼を用いた供試体よりも柔らかい弾性挙動を示し、降伏せん断耐力では復元力が大きい結果となった。ただし、最大せん断耐力は、底鋼板の板厚の影響をほとんど受けず、同程度であった。

（3）ジベルの溶接部の底面積と降伏せん断耐力との関係

ジベルの溶接部の底面積（の厚×錠長）と降伏せん断耐力との関係を図-5に示す。ここで、ジベルの溶接部の底面積は設計値を用いた。図中に供試体A シリーズの線形回帰直線を示すが、原点近傍を通る直線で近似され、相関係数 r は 0.910 となり、回帰直線の信頼性は高いと判断される。なお、今回のサンプリングは、同種供試体の平均値で回帰直線を設定したが、多数本数のデータを用いた回帰直線もほぼ同様の傾向であることを確認した。
ここで、Aシリーズの降伏せん断耐力は、溶接面の断面積に比例して増減し、式(1)で現されることがわかった。

\[P_y = 0.234 \cdot A_d \cdot 42.8 \quad (1) \]

ここで、\(P_y \)：降伏せん断耐力
\(A_d \)：ジベルの溶接部
の断面積 (mm²)

(4) ジベルの溶接部のど断面積と最大せん断耐力との関係
ジベルの溶接部の断面積と最大せん断耐力との関係を図-6に示す。図中に供試体 Aシリーズの線形回帰直線を示すが、原点近傍を通る直線で近似され、相関係数 \(r \) は 0.951 となり、回帰直線の信頼性は高い。ここで、Aシリーズの最大せん断耐力も、降伏せん断耐力と同様に、溶接部の断面積に比例して増減し、式(2)で現されることがわかった。

\[P_{cr} = 0.539 \cdot A_d \cdot 0.2 \quad (2) \]

ここで、\(P_{cr} \)：最大せん断耐力
\(A_d \)：ジベルの溶接部
の断面積 (mm²)

(5) ジベルの溶接部のど断面積と水平せん断パネ定数との関係
ジベルの溶接部の断面積と水平せん断パネ定数との関係を図-7に示す。図中に供試体 A, B, Cシリーズの線形回帰直線を示すが、いずれの水平せん断パネ定数とも、切片が 400N/mmジベル近傍を通る直線で近似されることがわかった。水平せん断パネ定数とジベルの溶接部の断面積との関係を、式(3)-A, (3)-B, (3)-Cに示す。

\[k_x = 1.053 \cdot A_d + 410 \quad (3)-A \]
\[k_y = 0.816 \cdot A_d + 419 \quad (3)-B \]
\[k_{cr} = 0.645 \cdot A_d + 373 \quad (3)-C \]
ここでは、

\[K_A, K_B, K_C : 積体 \{A, B, C\} \]の

水平せん断パネ力定数 (kN/m/mm 2)

\[A_B : \]ジベルの溶接部の鋼断面積 (mm²)

すなわち、ジベルの溶接部の鋼断面積の増減に対応して、

水平せん断パネ力定数は増減するもの。ジベル背面の、

トラス斜材とトラス断材（図 2 参照）とで固まれたコン

クリートが、ジベルの幅全域にわたってジベルの変形を

拘束してせん断力に抵抗するため、ジベルの溶接の鋼断

面積が小さくても、ある程度のパネ力定数を有しているこ

とがわかった。これより、トラス形状のジベルを用いた

場合の水平せん断パネ力定数については、トラス断材とト

ラス斜材とで固まれたコンクリートのコンファイン効果

を期待できることがわかった。

4. まとめ

本研究では、トラス型ジベルの部材断面の大型化にと

もなう一連の機能検証実験のうち、要素実験として大型

のトラス型ジベルを用いた押し抜きせん断実験を実施し、

ジベルのせん断に関する挙動を確認した。以下に、その

結果を要約する。

①ジベルを直列に2ジベル配置とした場合の押し抜きせん

断特性は、ジベル間のコンクリートのコンファイン効

果により1ジベルの耐力を上回る値となる。

②ジベル方向と直交する方向のジベルの押し抜きせん断

特性は、ジベル方向の耐力と同程度である。

③ジベルを溶接する底鋼板（t=6mm）の再現した押し抜

きせん断特性は、II形鋼を用いた標準的な押し抜きせ

断実験結果と比べて水平せん断パネ定数で70〜85％程度に低減される。

④ジベルの降伏せん断耐力および最大せん断耐力とともに

ジベルの溶接部の鋼断面積にほぼ対応して線形に増減する。

⑤ジベルの水平せん断パネ力定数は、ジベルと、それにコ

ンファインされたコンクリートが一体となって前面

コンクリートを支圧するため、ジベルとコンクリート

との相乗作用により決定される。

上記の結果より、大型のトラス型ジベルの基本的な押

し抜きせん断特性は把握できたと言える。今後は、合成

床版としての静的実験や連続桁中間点支を模擬した実験、

床版としての耐久性を検証するための荷重走行実験な

どの一連の機能検証を行い、床版支間の長大化（6m〜10m

級）への対応と構造の合理化を図っていく予定である。

【参考文献】

1) 作部幸久, 久保具文, 高木俊任, 戦内隆文: 各種合成床版

の構造と適用例, 第1回鋼橋床版シンポジウム講演論文集, 土木学会, 1998. 11

2) 国土交通省土木研究所: 道路橋床版の被荷重走行試験

における疲労耐久性評価手法の開発に関する共同研究

報告書(その4), 平成13年1月

3) 国土交通省土木研究所: 道路橋床版の被荷重走行試験

における疲労耐久性評価手法の開発に関する共同研究

報告書(その5), 平成13年3月

4) (財) 災害科学研究所: トラス型ジベルを用いた合成床

版の実験的研究, 平成2年3月

5) (財) 災害科学研究所: トラス型ジベルを用いた合成床

版の過渡的な定点疲労実験, 平成3年3月

6) (財) 災害科学研究所: トラス型ジベルを用いた合成床

版の過渡的な静荷重実験による疲労実験, 平成3年

3月

7) 中井博, 坪川邦雄, 河村正芳, 真田健司: トラス型

ジベルを用いた合成床版の設計・製作・施工について、

土木学会論文集, No.486, VI-22, 土木学会, 1994. 3

8) 橋本靖明, 山本晃久, 鹿島孝之, 小出宜央, 水口英明,

水口和之, 鈴木規生: 豊田ジャンクション・ トラス型

ジベル合成床版の静的耐荷力に関する実験的研究, 土

木学会第55回年度学術講演会講演集, CS-270, 土木学

会, 2000. 9

9) 山本晃久, 橋本靖明, 鹿島孝之, 小出宜央, 水口英明,

水口和之, 鈴木規生: 豊田ジャンクション・トラス型

ジベル合成床版の型枠剛性に関する実験的研究, 土

木学会第55回年度学術講演会講演集, CS-271, 土木学

会, 2000. 9

10) 鹿島孝之, 山本晃久, 橋本靖明, 小出宜央: トラス型

ジベル合成床版の疲労耐久性に関する実験的研究, 土

木学会第55回年度学術講演会講演集, CS-280, 土木学

会, 2000. 9

11) 山本晃久, 橋本靖明, 鹿島孝之, 水口英明, 水口和之,

鈴木規生, 坪川邦雄: トラス型ジベルを用いた長支間

合成床版の実用化に関する実験的研究, 第2回道路橋

床版シンポジウム講演論文集, 土木学会, 2000. 10

12) 橋本靖明, 橋本靖明, 桂原英, 石下雅史, 鈴木裕二,

中岡毅: 豊田ジャンクション・トラス型ジベル合成床
版のモルタル被れ防止確認試験, 土木学会第56回年
度学術講演会講演集, VI-284, 土木学会, 2001. 10

13) 山本晃久, 小出宜央, 鹿島孝之, 田中健一: トラス型ジ

ベルの押し抜きせん断実験に関する一考察, 土木学会

第56回年度学術講演会講演集, 土木学会, 2001. 10