The State of the Arts and Problems for the Design and Construction of the Continuous Composite Girder Bridge and Shear Connectors

Osamu OHYAMA, Takayuki EBINA, Yasuhiro SHISHIDO and Shoichi SHIMADA

A bridge type consisting of a few number of the main steel girders and durable deck slab, i.e. pre-stressed concrete slab or composite slab, has been gotten into the limelight by their advantages for economy and durability. This paper directs a spotlight on to the continuous composite girder bridges, which are more rational system than simple span bridges and shear connectors, which are the key elements of the connection between main girder and deck slab. Pre-stressing for deck slab in longitudinal direction at the intermediate bearing supports, stiffening and thinning of the web plates, and comparison of the design method of the various specifications for continuous composite girder bridge, etc. are surveyed and evaluated.

Key Words: continuous composite girder bridge, shear connector, design rules, design method

1. はじめに

プレストレストコンクリート床版(以下，PC 床版という)又は合成床版といった従来の鉄筋コンクリート床版(以下，RC 床版という)に比べ耐久性が高く、かつ床版支間長の長大化に対応できる床版の研究・開発に伴い、鋼構造においても相似性を活用した合成鋼橋梁が活用される動きも出てきている。

また、耐久性の高い床版を構造部材として有効に活用することで、更なるコスト削減を図ることを目的に、このような構造形式を適用した連続合成鋼橋が活用される動きも出てきている。

このような流れの中で、土木学会 鋼構造委員会 道橋床版の調査研究小委員会 第 3 分科会(構造設計分科会)では、床版の構造、連続合成鋼橋、床版の解析、すれ止め構造に着目する 4 つの WG を立ち上げ、各々のテーマについて現状の分析と問題点の抽出を行った上で、これらの課題に対する調査研究を進めている。

本論文では、上記分科会活動の中間報告という位置付けで、連続合成鋼橋ならばすれ止め構造に着目して行った 1998 年から 2002 年までの文献調査、無理調査、担当者のヒアリング、ならびに連続合成鋼橋、すれ止め構造に関する既往の規定類の収集と調査を行った成果と、これらを通じて浮かび上がってきたの今後の課題について報告する。まず、連続合成鋼橋およびすれ止め構造に関する設計規準類について文献調査を行った成果を表 1 に示す。

ここで、表 1 における主な特徴をまとめると、以下のとおりであり、各団体委員会において、より合理的な設計手法を模索する取り組みが行われている。

① 床版荷重と主桁荷重の重ね合わせを照査する場合、日本道路公団関西支社および静岡建設局は、現行の道路構造設計方書・同解説(以下、道示という)と異なり、L 荷重の 60% と T 荷重を重ね合わせ、かつ許容応力度の割り増しは行わないこととしている。

② ひび割れ幅を算出する場合、日本橋梁建設協会を除いて、コンクリート標準設計方書(以下、標準設計方書という)を適用している。ただし、日本道路公団関西支社のみ、ひび割れ発生後、ひびわれを起こしていないコンクリート部材が部材の密性に寄与する機能を考慮している。

③ すれ止めの許容せん断力を算出する場合、日本道路公団関西支社のみ、土木学会鋼構造物設計指针 Part B 合成構造物に準拠している。
表-1 連続合成桁橋の設計規準類の調査結果一覧表

<table>
<thead>
<tr>
<th>項 目</th>
<th>日本橋梁建設協会</th>
<th>日本道路公団（関西支社）</th>
<th>日本道路公団（東北支社）</th>
<th>名古屋高速道路公社</th>
<th>福岡北九州高速道路公社</th>
</tr>
</thead>
</table>
| 出典 | PC床板を有するプレストレスしない連続合成2主桁橋の設計例と解説
 | PC床板を有する連続合成2主桁橋の設計法
 | 長財団所打ちPC床板の設計・施工マニュアル
 | 鋼構造物設計要領
 | 都市内高速道路における合理化橋梁
 |
| 適用床板支間長 | 6m | 6m（標準） | 10m（標準） | 3.3m | 6m |
| 中間支点部の照査項目 | 各荷重ケースに対して、鉄筋応力で照査
 | 等荷重ケース
 | 床荷重
 | 各荷重ケースに対して、鉄筋応力で照査
 | D+PS×C+SH
 | D+PS×C+SH+(T)+(L)
 | ひび割れ許容限界
 |
| 床板作用と主桁作用の重ね合わせ | 道示11.2.5による
 | ひび割れ許容限界
 | 活荷重による主桁作用には活荷重を0.6×L
 | 荷重を低減し、許容応力の割増しを考慮
 | 道示11.2.5による |
| 許容 ひび割れ幅 wₐ | 鋼材の腐食に対する環境条件により規定
 | ただし最大許容値は0.2mm
 | 床板上面：0.0035C（mm）
 | 床板下面：0.005C（mm）
 | 0.2mm
 | ヘンウェル式
 | コンクリート標準示方書式を採用
 | ただし、関西支社は、テンションスフィーニングの影響を考慮．
 | ユーロコード
 | (ひび割れ割引設計) |
| ひびわれ幅の算定式 | 最小鉄筋量
 | 道示11.2.3による
 | 中間支点部：2%以上
 | 中間支点部：1%程度
 | 中間支点部：2%以上
 | 中間支点部：2%以上 |
| ずれ止めの標準構造 | スタッド |
| ずれ止めの許容せん断力 | 鋼構造物設計指針
 | Part Bに準ずる |
| 2. 連続合成桁橋の現状

2.1 わが国における連続合成桁橋の変遷

合成桁橋は1940年にドイツで開発されたが、わが国でも1952年に合成桁橋に関する研究が始まり、1953年に神崎橋（大阪府）、1954年に田田橋（東京都）で建設された。1959年には「鋼道路橋の合成ケガ設計施工指針」が日本道路協会より刊行され、以降、主に鋼材を節約する観点から多数の合成桁橋が建設されるようになっ

1960年代には、連続合成桁橋の中間支点付近に発生する主桁作用による負の曲げモーメントによってコンクリート床板に生じる橋軸方向引張応力を低減するために、中間支点の上昇・下降（ジャッキアップダウン）や、PC鋼材を用いて中間支点部の床版に橋軸方向プレストレスを導入する、いわゆるプレストレスする連続合成桁橋が建設されるようになり、1965年には道路橋示方書にプレストレスする連続合成桁橋に関する規定が追加されるに至った。

しかしながら、プレストレスの導入は設計および施工が複雑で工期が長くなるなどの短所があり、必ずしも有利な方式とはならなかった。そこで、このような問題を改善するために、プレストレスしない連続合成桁橋に関する研究が進められることになり、1973年の道示改訂に反映された。これ以降、連続合成桁橋としては、主にこのプレストレスしない連続合成桁橋を指すようになった。

一方、1970年代より鋼橋で最も一般的に用いられていたRC床板の損傷事例が多発したことから、合成桁橋の採用が見合わされるようになり、わが国独自の考え方である連続非合成桁橋という構造形式が主流をなすようになった。

1990年代に入り、このようなRC床板の損傷原因を解明する研究が進め、同時に、ライフサイクルコストの概念が導入され、RC床版よりも鋼材に耐久性の高い床版として、橋軸直角方向にプレストレスを導入したPC床床や合成床床が登場するに至った。これ
2.2 連続合成桁橋に用いられる床版形式

現在、鋼橋に用いられている耐久性の高い床版の代表例はPC床版である。PC床版の種類をその施工方法から分類すると、場所打ちPC床版とプレキャストPC床版に区別されるが、連続合成桁橋に適用しやすいのは場所打ちPC床版である。しかしながら、場所打ちPC床版には乾燥収縮やクリープの影響と、現場工期が長くなることに注意が必要である。

これに対してプレキャストPC床版は、工場製品であることから品質が安定しており、乾燥収縮やクリープの影響も少なく、現場工期の短縮も可能である。しかしながら、鋼桁との接合部の構造条件により、ずれ止めの配置本数が制限されるため、連続合成桁橋に採用されるケースは稀である。

場所打ちとプレキャストの利点を併せ持つハーフプレハブPC床版の開発も進められているが、これも連続合成桁橋での採用事例は稀である。

一方、合成床版は連続合成桁橋への採用を前提にマイナール型の改訂が行われるに至り、今後、連続合成桁橋への採用事例が増加するものと思われる。

2.3 連続合成桁橋の中間支点部の対応

2.1 で述べたとおり、近年のわが国において、工房構造という観点からプレストレスしない連続合成桁橋に期待が寄せられている。しかし、負の曲げモーメントにより発生する引張応力に対して、コンクリート床版の耐久性を確保するという観点から、死荷重作用時にコンクリート床版にび割れを生じさせないような設計手法を導入する必要もある。その代表的な手法として、図-1に示す逐次ジャッキアップダウンによるプレストレス導入工法が挙げられる。また、施工における温度応力などを考慮し、カウンターウェイトを併用することで、コンクリート床版施工時において一時的にコンクリート床版に発生する引張応力を1.0N/mm²以下に抑える工法を採用する例もある。

2.4 鋼桁の補剛設計

連続合成桁橋の場合、床版が鋼桁と合成した後に作用する後死荷重や活荷重に対して、合成断面としての中立軸が鋼桁の上フランジ近傍に位置することとなる。このため、従来の連続非合成桁橋で配置してきた主桁作用による曲げモーメントが正となる部分の上段の水平補剛材を省略できる可能性がある。

さらに、アスペクト比を3.0程度まで許容することで、図-2に示すような垂直補剛材の削減や腹板の板厚を薄くする、いわゆる薄肉少補剛設計を採用した事例もある。

文献21)、22)によれば、外形式の降伏限界幅厚比は、フランジと腹板の相互拘束効果が顕著に現れることが示されている。したがって、図-3より、圧縮フランジの幅厚比パラメータβが小さくなると、腹板の幅厚比パラメータαを大きく（腹板を薄く）することが可能。ここで、フランジと腹板の幅厚比パラメータを式(1)に示す。
表-2 各国のずれ止めの設計

日本 (道承115.5) 2002年3月
スタッドの許容せん断力 \(Q_s \)
\[
Q_s = 9.4d^2 \sqrt{\sigma_y}
\]
\((H/d \geq 5.5) \)
\[
Q_s = 1.72dH \sqrt{\sigma_y}
\]
\((H/d < 5.5) \)

\(H \): スタッドの高さ (mm), \(d \): スタッドの直径 (mm)
\(\sigma_y \): コンクリートの設計基準強度 (N/mm²)

日本 (鋼構造設計指針 Part B) 1997年9月
スタッドの水平せん断強度 \(Q_s \)
\[
Q_s = 41.4d^2 \sqrt{\sigma_y}
\]
\((H/d \geq 5.5) \)
\[
Q_s = 7.59dH \sqrt{\sigma_y}
\]
\((H/d < 5.5) \)

スタッドのずれ限界強度 \(Q_{sL} = 0.5Q_s \)

ヨーロッパ (Eurocode) 2017年10月
スタッドの終局限界状態における設計せん断耐力 \(P_{sd} \)
\[
P_{sd} = 0.8f_c \frac{ap}{4} \sqrt{f_{\sigma_c} E_{cm}/\gamma_f}
\]
\[
P_{sd} = 0.29f_c \frac{ap}{4} \sqrt{f_{\sigma_c} E_{cm}/\gamma_f}
\]

\(f_c \): スタッドに用いる材料の特性終局引張強度 (500N/mm²未満), \(f_{\sigma_c} \): 材質を考慮したコンクリートの特性引張強度 (円柱強度 N/mm²), \(E_{cm} \): コンクリートの割線弾性係数の公称値 (N/mm²)

\(\sigma : 0.3 \leq H/d \leq 4.0 \) のとき \(\sigma = 0.2 ((H/d) + 1) \)

\(H/d > 4.0 \) のとき \(\sigma = 1 \)

\(\gamma_f \): 施工を除く終局限界状態に対しては1.25と定められる部分安全係数

3. ずれ止め構造の現状

鋼・コンクリート複合構造および混合構造が注目される中, 木製構造においても様々な形状で鋼とコンクリートを組合わせた方法が提案され, これらの用途に合ったずれ止めの研究・開発が行われている。本章では, それらの内, 合成鋼構造に用いられているずれ止めおよび波形鋼板ウェブPC構の接合方法について紹介する。

3.1 合成鋼構造のずれ止め

わたが国の合成鋼構造のずれ止めは, 主に路地寸法スタッド (以下, スタッドと呼ぶ) が用いられている。スタッドは, 1950年米国イリノイ大学のVinesらの研究により, スタッドのずれ止めとしての信頼性が確認され, 施工性・経済性に優れていることより, 国内外で広く用いられている。スタッドは, 合成鋼構造だけでなく鋼とコンクリートを合成するずれ止めとして, 土木・建築を問わず合成構造物に広く使用されている。

日本では, 表-1に示すように, 合成鋼構造に用いるずれ止めのほとんどが, 道承に規定されているスタッドの許容せん断力 によう設計されている。日本を除く主要国では, 許容応力度設計法から荷重係数設計法あるいは限界状態設計法に移行しており, 静的強度, 疲労強度, さらに引抜きに対する制限値が規定されている。

現状における日本, ヨーロッパにおけるスタッドの設計値を表-2に示す。土木学会鋼構造物設計指針 Part
B 合成構造物を S1 単位系に変換した強度評価式も同様に示している。表 2 に示した設計値とコンクリート強度との関係を図 4 に示す。ここでは、スタッドの高さ H=150mm、直径 d=22mm、コンクリートのヤング係数 Ec=30kN/mm² とした。

図-4 コンクリート強度とずれ止めの設計値との関係

図-4 より、わずかに許容せん断力を用いた設計法では、スタッドの安全率を大幅に確保していることになる。これはずれ止めの許容せん断力の値は、破壊に対して 6 倍の安全率をもつためである。したがって、指示の設計では、スタッドの本数は、ヨーロッパの規準で設計された本数よりもるかに多くなり、経済的な設計となる。特に少数主桁橋では、主桁本数が少なくなるほど主桁を一本に作用する水平せん断力が大きくなるため、その傾向が大きくなる。

3.2 波形鋼板ウェブ PC 橋に用いられる接合方法

近年、高品質を維持しながら、コスト縮減、施工の省効化、部材の軽量化を図ることを目的とした研究が盛んに行われている。このような状況の中で、従来の PC 鋼桁橋のウェブを波形鋼板に置き換えた部分高性波形鋼板ウェブ PC 橋が注目されている。この構造形式のオリジナルはフランスであるが、わが国においてもこの技術を導入し、日本道路公団を中心にして施工実績を増やしている。

その採用される主な理由は、ウェブを波形鋼板に置き換えることにより従来の PC 橋よりも 20%程度の重量低減を図ることが可能となる。波形鋼板ウェブ PC 橋の床面と波形鋼板の接合方法においては、様々な研究が行われているが、現状ではスタッドおよびアンジル比の設計を多く採用されているようである。

現状における接合方法の代表例と構造特性を表-3 に紹介する。

4. 今後の課題

連続合成桁橋、ならびにずれ止め構造に関する今後の課題としては、以下のような項目が挙げられる。

4.1 連続合成桁橋

(1) 連続合成桁橋に適用する床版形式の拡充

後述のずれ止めとも関連するが、わが国の連続合成桁橋の施工事例はその床版形式を事例（PC 床版）としているものが多く、最近になって合成床版の施工事例が出てきたところである。

連続合成桁橋をより普及させるためには、多様な床版形式を適用可能とすべきであり、プレキャスト PC 床版、モルタルプレハブ PC 床版、あるいは RC 床版などについても連続合成桁橋が適用できるようになることが望ましい。

(2) 施工時を含めた床版の橋軸方向の設計

施工時における床版の有効なひび割れ発生させる要因として、温度応力、ならびに主桁作用に起因して床版に作用する引張応力などが考えられている。温度応力の大半が、床版施工完了後も残存する。一方、床版と鋼桁の温度差、あるいは乾燥収縮などについては、床版施工時よりすでに発生している。現時点でにおいて、上記の項目を考慮して床版の施工時から供用開始時までの設計あるいは照査を系統立てて行っている例はないとと思われる。この点については、今後の研究の進展を期待したい。なお、この際のキーワードは、「連続合成桁橋としての鋼桁の設計から、連続合成桁橋としての床版設計への移行」ということになるのではないかと思われる。

また、中間支点部の負曲げモーメントへの対応としてわが国では近年その実績が増えてきているジャッキアップダウン工法が、ヨーロッパではすでに行われないという同じ道を、わが国もたどるのかどうかも興味深いところである。

(3) 場所打ち PC 床版における有害なひび割れの定義

場所打ち PC 床版において、施工時の床版にその耐久性に重大な影響を及ぼす有害なひび割れを発生させることが許されない、しかしながら、床版の耐久性に特に影響を及ぼさないようなごく軽微なひび割れであってもこれを許さないとするのは、工学的にも、施工的にも、経済的にも問題であると思われる。現時点において、このような有害なひび割れと有害ではないひび割れの定義は必ずしも明確になっておらず、非常に重要な今後の検討課題と考えられる。

4.2 ずれ止め構造

(1) スタッドの許容せん断力

4.1 で述べた項目を実現する際のポイントがスタッドの許容せん断力の見直をしてある。本文でも述べたように、わが国の規定は欧州と比較して安全率が大きく、さらに、現行規準のベースとなっている実験結果も古いデータである。
表3 現状におけるわが国の波形鋼板ウェブPC橋の接合方法

<table>
<thead>
<tr>
<th>接合タイプ</th>
<th>特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.スタッドジベル</td>
<td>一般的な接合方法であり最も実績が多い。</td>
</tr>
<tr>
<td>2.アングルジベル</td>
<td>椎ジベルの挙動を示し、ずれ量が大きい。</td>
</tr>
<tr>
<td>3.埋め込み接合</td>
<td>折り曲げられた波形鋼板の間のコンクリートが直接せん断に抵抗する。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>接合タイプ</th>
<th>特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.パーフォボンドリップ</td>
<td>鋼板に開けた孔の内部に充填されたコンクリートが、2つのせん断面を有するジベルとしてせん断力で抵抗する。</td>
</tr>
<tr>
<td>5.ツインパーフォボンドリップ</td>
<td>鋼板に開けた孔の内部に充填されたコンクリートが、2つのせん断面を有するジベルとしてせん断力で抵抗する。</td>
</tr>
<tr>
<td>6.パーフォボンドリップ+スタッド</td>
<td>水平せん断力に対して、基本的にパーフォボンドリップで抵抗するとして設計する。</td>
</tr>
</tbody>
</table>

(2)すれ止めの設計上の見直し
すれ止めに作用する応力は、橋軸方向の水平せん断力のみならず橋軸直角方向の水平せん断力、鉛直方向力、場合によっては曲げモーメントも考えられる。横橋断面を省略した、床版の張出し長が長くなったり、現在のすれ止め設計思想の前提条件が崩れつつある今、これらの力を考慮したすれ止めの設計方法の再構築が求められてくる可能性もある。
また、すれ止めの設計に関する研究を進める際に、床版と鋼桁との付着の取扱いが大きな問題となる。すれ止めが負担する水平せん断力を小さくしようとすれば、この付きに期待する方法も考えられるが、50年、100年という付着の長期的な信頼性については未だ解明されているのが現状である。
すれ止めの解析においては、コンクリート床版と鋼桁との付着の影響を考慮したすれ止めの解析など、種々の解析が行われている。しかし、コンクリート床版と鋼桁とのすれを完全に再現できていな
いのが現状である。そのため、モデル化を含め解析方法について検討する必要がある。

3. 施工の配置については、場所打ち PC床版において、中間構形状位置の床版下面のひび割れ、あるいは床版と鋼物上フランジとの隙間を予防するために、同部のずれ止め配置を直後提案がなされている(2)(3)が、このようなことを含めて、構造経図的な規定を定める必要性も感じられる。

その他にも、鋼2主桁橋においては、床版厚が従来の多主桁構のものよりも厚くなる。そのため、スタッドを長尺にする必要があると考えられるが、それらの規制についても、現状において、スタッドの長さに関する規定は必ずしも明確になっておらず、ヨーロッパで見受けられるスタッド高さを変化させた構造なども含めて、スタッドの高さに関する研究も望まれる。

(3) ずれ止め構造に要求される性能の多様化への対応
合成桁橋にプレキャスト PC床版を採用する場合に、ずれ止めの配置の制限を考慮し、ずれ止めのせん断力を向上させるために、スタッドの強度を増加させた高強度スタッド20)や、根元部の断面を大きくした変断面スタッド21)が開発されている。また、中間支点付近の負曲げ応力における床版の引張力を緩和させるずれ止めとして、スタッドをより柔らかくすることを考え根元部にウレタンを取付けたスタッド22)が開発されている。さらに、PC緊張時などへの干渉を抑えるために、初期のずれ剛性を低下させ、その後ずれ止めの機能を果たす連続合成スタッドも開発されている23)。この他にも、プレキャストPC床版の施工性を考慮した鋼スカートの検討、長尺への対応および輸送上の制約を考慮してスタッド部材を高ナットで繰り上げプレキャストが検討されている30)。

このように、合成構造のずれ止めに対する要求性能が多様になってきており、それに対応するずれ止めの開発も今後の課題である。

5. おわりに
以上に、連続合成桁橋、ずれ止め構造に関する現在ならびに今後の課題について述べた。これらの課題について当W Gでは、平成16年を目処に研究成果をまとめる予定である。

【参考文献】
1) 高橋昭一、志村 勉、橋 吉宏、小西哲司：PC床版2主桁橋「ホロナイ川橋」の設計および解析、試験検討、橋梁と基礎 Vol.30 No.2, pp.23～30, 阪建設図書, 1996年2月。
2) 鈴木信之、池田博之、水口和之：鋼少数釘桁橋の設計と施工、第1回鋼構造と橋に関するシンポジウム論文報告集、pp.39～46。(社)土木学会鋼構造委員会, 1998年8月。
3) (社)日本橋梁建築協会：PC床版を有するプレストレスしない連続合成桁設計要領(案), 1996年3月。
4) 田村陽司、川尾克利、大垣賀津雄、作川孝一：PC床版連続合成2主桁橋「千鳥の沢川橋」の設計、橋梁と基礎 Vol.32 No.9, pp.18～22, 阪建設図書, 1998年9月。
5) 端本勝久、坂本純男、大久保宣人、田中啓雅、福田良夫、大津呂川橋の設計と施工－PC床版連続合成2主桁橋－、片山技報 No.20, pp.49～56, 2000年11月。
6) 本間淳史、長谷俊彦、橋原和成、村中和己、上原 正、河脇龍彦：長篠間場所打ちPC床版の設計と施工－第二東名高速道路篠峯川橋－、橋梁と基礎 Vol.36 No.10, pp.2～10, 阪建設図書, 2002年10月。
7) 吉崎信也、常松修一、石毛立也、小川克美：都市内高架道路における合理化橋梁、第4回鋼構造と橋に関するシンポジウム論文報告集, pp.25～33, (社)土木学会鋼構造委員会, 2001年8月。
8) (社)日本道路協会：道路橋仕様書・同解説Ⅰ：共通編Ⅱ：鋼構編, 2002年3月。
9) 土木学会：コンクリート標準示方書・設計編・[平成8年制定]、丸善出版, 1996年3月。
10) 土木学会：鋼構造シリーズ③B 鋼構造物設計指針 Part B 合成構造物編, 1997年9月。
11) 中村明広、安川義行、稲葉尚文、橋 吉宏、宮山 洋、佐々木保隆：PC床版を有する鋼連続合成2主桁橋の設計法(上)－連続合成桁における中間支点部の設計－、橋梁と基礎 Vol.36 No.2, pp.27～35, 阪建設図書, 2002年2月。
12) 中村明広、稲葉尚文、大垣賀津雄、川口喜政：PC床版を有する鋼連続合成2主桁橋の設計法(中)－腹板の少補剛設計法－、橋梁と基礎 Vol.36 No.3, pp.47～54, 阪建設図書, 2002年3月。
13) 中村明広、安川義行、稲葉尚文、坂本純男、大垣賀津雄、渡辺英明：PC床版を有する鋼連続合成2主桁橋の設計法(下)－床版およびずれ止めの設計法－、橋梁と基礎 Vol.36 No.4, pp.33～39, 阪建設図書, 2002年4月。
14) 寺田典生、本間淳史、河脇龍彦、松井裕之：長篠間場所打ちPC床版の設計・施工マニュアル(上)－総則・設計編－、橋梁と基礎 Vol.36 No.11, pp.21～28, 阪建設図書, 2002年11月。
15) 寺田典生、本間淳史、河脇龍彦、松井裕之：長
24) 土木学会構造委員会：鋼・コンクリート複合構造の最新の進歩，pp.52〜63，2001年11月。
25) 木下洋史，長谷俊彦，河口龍彦，林ら：耐震性に影響される疲労耐久性に関する研究，土木学会論文集No.604/1-103，pp.29〜38，2002年10月。
26) 名古屋高速道路公社：鋼構造物設計要領(案)．2001年4月。
27) 東山浩，松井良之：橋梁基礎にプレストレスひび割れを伴うコンクリート床版の走行荷重に対する疲労耐久性に関する研究，土木学会論文集No.604/1-45，pp.79〜80，1998年10月。
28) 三木順平，山田真幸，長江洋，西田浩：既設非合成鋼橋の活荷重応答の実態とその評価，土木学会論文集No.647/1-51，pp.281〜294，1998年4月。
29) ハーフプレハブ PC合成床版設計・施工マニュアル(案)，(財)災害科学研究所，ハーフプレハブ合成床版研究会，2002年10月。
30) (社)日本橋梁建設協会：合成床版設計・施工マニュアル，2001年6月。
31) 西村宜男，大崎史淳，長谷川徹雄：曲げを受ける1断面の局部座屈強度と限界幅厚比に関する実験的研究，構造工学論文集Vol.37A，pp.135〜144，1991年3月。
32) 西村宜男，秋山正行，松村達生：曲げを受ける1断面におよびプレストレスガーダーの強度設計方法の一提案，構造工学論文集Vol.39A，pp.165〜174，1993年3月。