炭素繊維シートを用いた長方形断面鋼製橋脚柱の
耐震補強方法に関する基礎的実験

松村 政宗, 北田 俊行, 林 秀徳, 谷 一成

鋼製橋脚の耐震補強においては、アンカー部の耐荷力を考えると、補強に伴う柱部材の耐荷力の上昇を許容できない場合も多い。そこで、本研究では、耐荷力の上昇の伴わない、より簡便で施工性に有利な耐震補強方法として、RC 橋脚の補強補強に用いられている炭素繊維シートの貼付方法を矩形断面の鋼製橋脚柱断面材に適用することを目指している。そこで、炭素繊維シートの貼付方向と層数を変化させた実験供試体を用いて、増加補強の断面変位剪断実験を実施し、基礎的材料ならびに補強法の整理を行った。その結果、炭素繊維シートを貼付することにより、強度上昇をほとんど伴わず、補強の変形性を改善することができるかった。

Key Words: Carbon Fiber Sheet, Ductility, Cyclic Loading Test, Steel Bridge Pier, Seismic Retrofitting

1. はじめに

兵庫県南部地震以降、地震性緊急における構造物の変形性能を検討した耐震設計法が、新設の橋脚に対して適用されるようになっている。そして、現在その設計基準を満足しない既設の RC 橋脚は長引くに及ぶ。既設の橋脚補強についても、それらの補強方法が実施されている。

鋼製橋脚の耐震補強工事において、変形性能を高めるために、コンクリートを充填し合成材とするコンクリート充填工法、あるいは発生する崩壊モードを改善するために補強材を補修・増設する補修材補強工法などが採用されている。しかしながら、アンカー部の施工方法には RC 方式で設計されている鋼製橋脚 8 には、コンクリートを充填すると、柱部材の耐荷力がアンカー部の耐荷力を上回り、橋脚柱部に損傷が集中し発生する恐れしかない崩壊モードの発生が予想される例も見られる。また、補修材補強工法についても、補修材の補強に必要な材種の数が多く、また溶接・ボルト接合・塗装など橋脚内部の狭い空間での作業が多いため、断面の小さな鋼製橋脚への適用が困難である。そこで、補強材補強工法について、補修材補強工法に比べて、実験供試体を用いて実験的に検討している。そして、CFS を用いた鋼製橋脚の耐震補強方法についての基礎的資料を入力するとともに、その補強効果および問題点についての考察を加えたものである。

2. 実験の概要

2.1 実験供試体

表1 および図1 に示す 5 体の実験供試体を作製した。これらの実験供試体は、実際の鋼製橋脚柱の補剛板補強をできるだけ再現した梁柱供試体、すなわち以下の式(1) ～(3)に示す補強材補強体の板パネルの幅厚比パラメータ R_{f}、補剛板全体の幅厚比パラメータ R_{f}、および補剛材柱の幅厚比パラメータ R_{f} を文献 6 に規定されている制限値の 0.4、0.4、および 0.5 を満足せず、耐震補強が必要となる補剛板補強を有する箱形断面柱を想定した。
実験供試体の寸法单位 (mm)

<table>
<thead>
<tr>
<th>実験供試体</th>
<th>水平変位荷重位置 (L)</th>
<th>外形寸法 (392 \times 280)</th>
<th>板厚 (\text{mm})</th>
<th>CFS 貼付層数</th>
<th>貼付高さ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEO-L/5</td>
<td>1,600</td>
<td>392×280</td>
<td>1.6</td>
<td>3</td>
<td>(L/2)</td>
</tr>
<tr>
<td>CCF13</td>
<td>1,600</td>
<td>392×280</td>
<td>1.6</td>
<td>3</td>
<td>(L/2)</td>
</tr>
<tr>
<td>CCF31</td>
<td>1,600</td>
<td>392×280</td>
<td>1.6</td>
<td>1</td>
<td>2(L/3)</td>
</tr>
<tr>
<td>CCF01</td>
<td>1,600</td>
<td>392×280</td>
<td>1.6</td>
<td>1</td>
<td>2(L/3)</td>
</tr>
<tr>
<td>CCF11f</td>
<td>1,600</td>
<td>392×280</td>
<td>1.6</td>
<td>1</td>
<td>2(L/3)</td>
</tr>
</tbody>
</table>

以下の式は、実験供試体の方法を示しています。

\[R_S = \frac{b}{t} \left(\frac{\sigma_t}{E} \right) \left(1 - \mu^2 \right) \]
\[R_T = \frac{B}{t} \left(\frac{\sigma_t}{E} \right) \left(1 - \mu^2 \right) \]
\[R_X = \frac{k_t}{t} \left(\frac{\sigma_t}{E} \right) \left(1 - \mu^2 \right) \]
\[\tau_{x'} = 4a_s^2n(1+n \delta_s) - \frac{(a_s^2 + 1)^2}{6} \]
\[\tau = \frac{E_t}{DB} \]

ここで、
\(\mu \)：鋼板のポアソン比
\(B \)：補強板パネルの全幅
\(b \)：縦補剛材による区切られた板パネルの幅
\(n \)：縦補剛材によって区切られた板パネル数
\(k_t \)：補強板全体の座屈係数
\(\alpha \)：縦補剛材
\(\delta_s \)：縦補剛材断面積比
\(D(x) = \frac{E}{12(1-\mu^2)} \)：板曲げ剛度

実験供試体の貼付方法は、RC 構造物に貼付する一般工程を参考にして、はじめに接着性を高め、鋼板の表面
を平滑化する下地処理を行い、さらにエポキシ系のプライマーを塗布する。その上で、CFSにエポキシ系のレジンを含浸させて貼付する方法を採用した。表4には、実験供試体への施工時のるべく同条件下で別途実施した材料試験結果を示す。

<table>
<thead>
<tr>
<th>引張強度 (N/mm²)</th>
<th>引張弾性率 (N/mm²)</th>
<th>目測量</th>
<th>(g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,230</td>
<td>2.32×10⁵</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>(3,400)</td>
<td>(2.30×10⁵)</td>
<td>(300)</td>
<td></td>
</tr>
</tbody>
</table>

ただし、表中の数值は、各試験結果を示す。

そして、実験供試体は、車両衝撃による構造基部の大損傷を防止するために充填されている中詰めコンクリートを想定して、橋脚高さL（橋脚下端から水平荷重の作用位置までの距離、下端では、橋脚高さという）の1/5までコンクリートを充填した。

ここで、実験供試体CCF13の名称は、CFSを鉛直方向に1層、水平方向に3層貼付したことを示す。また、CFSによる補強効果の比較・検討には、補強を施さずにコンクリートをL/5まで充填した鋼断面供試体CEO-L5を用いた。なお、実験供試体CCF11は、下端からの高さL/3の位置および下端で、鉛直方向に貼付したCFSと鋼板を治具によって固定し、CFSと鋼板とのずれを防止した実験供試体である（図2参照）。そして、すべての実験供試体において、柱下端(8cm)はCFSを1層増しとしている。

2.2 漸増繰返し水平変位載荷実験

漸増繰返し水平変位載荷実験においては、図3および図4に示すように、最大荷重1,000 kNの水平載荷ジャッキを水平方向に、最大荷重500 kN、ストローク±15 cmのアクチュエーターを鉛直方向に設置されている実験装置を用いた。なお、実験供試体は、橋脚が固定支持された（実際には、載荷フレームの弾性変形するため、厳密には固定支持を含む）、頂点を円筒ペアリングによるピン結合としている。

載荷方法は、はじめに下部構造物の死荷重に相当する鋼断面の全塑性軸方向圧縮力N₉の11%を作用軸力をとして載荷する。そして、水平変位の載荷方法は、図5に示すように、降伏水平変位δ₉を基準として、作用水平変位が降伏変位の±2倍、±3倍…と漸増するように載荷し、供試体の耐荷力の低下が確認できるまで繰返し水平変位を漸増載荷した。ここで、降伏水平変位δ₉は、軸方向圧縮力の影響を考慮した水平荷重による降伏水平変位である。実験供試体基部の弾性支持による剛体変位を含む変位である。

そこで、本実験を行う前に、張力変位における実験結果を用いて、実験供試体を支持する載荷フレームの傾斜方向に対する影響をパネ定数を求め、供試体基部に起因する剛体水平変位を含む降伏水平変位δ₉を実験的に算出し、本実験の実験基準水平変位と定めた。また、この載荷装置では、水平荷重Hによる変位δが増大していくと、水平荷重Hの鉛直成分N sin δ₉（H₉: 1,000 kN 定圧ジャッキの固定間隔距離）が、水平荷重Hに加算され、この影響が無視できない。以下では、この影響を計算により補正している。

3. 実験結果とその考察

3.1 水平荷重-水平変位関係

図6には、各実験供試体の水平荷重-水平変位曲線を示す。縦軸は、各実験供試体に作用する水平荷重Hを、横軸は、実験供試体の水平変位H₉で無次元化したものであり、水平荷重H₉を各実験供試体の降伏水
図7は、各実験供試体の塑性率および作用最大水平荷重の値を比較するため、各載荷サイクルの正負および負荷の水平荷重値・水平変位のピーク時点における座標値の絶対値の平均をプロットした包絡線を示す。さらに、表5には、包絡線から得られた各実験供試体の実験供試体CEO-L5に対する強度上昇率β（=H/H_{CEO-L5}）および塑性率$\mu_\omega(\delta_\omega/\delta_{yo})$とを比較して、まとめている。

図6、図7、および表5より、CFSを鋼製橋脚に付着すると最終水平荷重に至るまで安定した結着形のヒステリシスを描いているのが確認できる。また、コンクリートを$L5$まで増加するがCFSによる補強を施さない実験供試体CEO-L5、CFSを鉛直方向に1層、水平方向に1層貼付した実験供試体CCF13、および鉛直方向に3層、水平方向に1層貼付した実験供試体CCF11とを比べると、最終水平荷重はほぼ同様の値をとおり、CFSの貼付けが最終荷重に与える影響は明確には現れなかった。その原因として、補強板パネルを鋼補助鋼板に代用して、補強鋼パネルとCFSとの固有緩和、補強鋼パネルにおけるCFSの拘束効果が十分に得られないためと考えられる。しかしながら、最終水平荷重を各実験供試体の降伏水平変位で除して算出される塑性率は、実験供試体CEO-L5で3.78であったが、CFSにより補強を行った実験供試体CCF13では4.99、実験供試体CCF11では6.10とそれぞれ向上し、CFSにより補強により、強度上昇をほとんど伴うことなく、塑性率を約3から6程度まで向上できることがわかる。なお、CFSを鉛直方向に層数多く貼り付ける方が、若干ではあるが、良好な補強効果が確認された。

また、水平方向に1層だけCFSを贴付した実験供試体CEO-L5、CFSを鉛直方向に層数多く貼り付けることが、最終荷重を大きく上昇させることなく、CFSを鉛直方向に層数多く貼付すると、さらに、CFSの上・下端でCFSと補強板パネルを固定し、CFSを鉛直方向に層数多く貼り付けることが有利であることが確認された。
CCF01 とほぼ同様な繰返し挙動が得られ、これは、箱断面内側へ補剛材が座屈し変形した際に、CFS と鋼板とが剥離し、それらを両端で固定した効果が得られなかったためである。

いずれの実験においても、終局荷重付近において、コンクリートを充填した断面の直に上位置する鋼断面間の補剛材パネル全体が箱断面内側へ座屈変形し、繰返し回数の増大に伴って、耐荷力を失っていくことが確認された。したがって今後は、補剛材の箱断面内側への座屈変形する助けとなる鋼製補剛材への炭素繊維シートの適用性を検討する必要がある。また、エポキシ樹脂を含浸させた炭素繊維シートと鋼板パネルを組み合わせた複合補剛材の耐荷力特性、それらの接着力・付着力の評価方法、およびプライマーを含浸させた炭素繊維シートの厚さ方向のせん断剛性についての検討も必要であると考えられる。

3.2 水平荷重-軸方向ひずみ関係

実験供試体 CCF13 および CCF31 は、炭素繊維シートの貼付前に、鋼断面にもひずみゲージを貼付した。図8 には、実験供試体下端から、高さ 334mm の断面に貼付したひずみゲージから得られた実測ひずみを用いた水平荷重-軸方向ひずみ関係を示す。図8 には、ひずみの計測部位を示す。実験供試体 CCF13 では繰返し回数 4 回目まで、CCF31 では繰返し回数 2 回目までは、鋼板に貼付したひずみゲージの測定結果と炭素繊維シートに貼付したものは、作用ひずみの大きさに関係なく、ほぼ同様の值を得た。

また、硬化したエポキシ樹脂および CFS と鋼板との剥離により、少ない繰返し回数において、ひずみゲージが切断され、十分な測定結果を得ることが出来なかった。したがって、鋼部材が座屈する以前で、鋼と CFS が一体となって挙動すると考えられる。

3.3 実験終了後の実験供試体の崩壊状況

図10 には、載荷を終了後、作用水平荷重をゼロまで戻した状況における崩壊状況を示している。CFS による補強を施さない実験供試体 CEO-L5 を含む、いずれの実験供試体も、橋脚高さの L5 までコンクリートを充填した断面の直に上位置する鋼断面に、繰返し回数 3～4 回目において、縦補剛材間の板パネルの局部座屈が発生し、その後、繰返し回数の増大に伴って補剛材パネル全体の座屈変形が進展し、崩壊に至っている。また、補剛材パネルの全体座屈変形が進展すると同時に、供試体の軸方向縮みを増大するため、CFS と鋼板との剥離し、その後の炭素繊維シート補強効果は、あまり期待できないことがわかった。

4. まとめ

本研究では、炭素繊維シート（CFS）補強工法の長方形断面鋼製橋脚の耐震補強法への適用性に関する補強効果を調べるとともに問題点を検討・整理するため、上部構造の死荷重を想定した一定の軸方向圧縮力を導入した状態
で、継続繰返し水平変位を与える載荷実験を行った。
本研究により得られた主な結論は、以下のとおりである。
1) CFSにより補強を施した各実験供体試の変位率μυを、

変位上昇率δに着目するとCFSを用いた補強により、
ほとんど変位上昇を伴うこととなり、塑性率μυを4
程度から5-6程度（補強前の鋼供体試は3.78）にま
で改善できることがわかった。
2) 水平方向1層のみのCFSで補強実験供体試

CCF1, 鉄柵方向に1層、水平方向に1層のみのCFSで補強実験供体試CCF11では、CFSによる
補強効果は、ほとんどの確認できなかった。
3) 継返し回数の増大に伴い箱型断面の内側に補強板全体

の座屈変形が進行し、崩壊に至った。そして、CFSにより
補強を施した実験供体試においては、補強板の箱
断面内側への変形を要因変形が進行すると、CFSと鋼板
との割離するため、最終荷重比が5のCFSと鋼板との
補強効果は、あまり期待できないと考えられる。
4) 補強板パネルが箱型断面内側への座屈変形するような

鋼製橋脚へのCFSによる耐震補強方法の適用性は、す
なわち鋼板パネルが箱型断面内側への座屈変形する場合
にもCFSが有効に機能する補強方法についての検討
が今後必要であると考えられる。
5) 今後、CFSと補強鋼板からなる補強鋼板の座屈力

特性、それらの耐ねじり・耐断面性の評価方法、および
プライマーとレジンを含浸させた耐震断面シートの
厚さ方向のせん断剛性についての検討も必要である
と考えられる。
6) 補強板パネルの側面への座屈変形を防止するために、

箱断面内側に支保工を設けたり、CFSと鋼板の割離を
防止するために、リベット等により一体化を仮定した構造で
補強する方法についても検討する必要があると考え
られる。

参考文献
1) 土木学会・耐震基準等基本問題検討会議：土木構造物の
耐震基準等に関する提言（第一次提言）、1995年5月。
2) 土木学会・耐震基準等基本問題検討会議：土木構造物の
耐震基準等に関する提言（第二次提言）、1996年1月。
3) 亀岡南部地震震源地検討会議：亀岡南部地震
により被災した道路橋の復旧に係る仕様（案）、1995
年2月。
4) 日本道路協会：「亀岡南部地震により被災した道路橋
の復旧に係る仕様・解説」に基づく設計計算例、1995
年6月。
5) 首都高速道路公社：既設鋼製橋脚の耐震性向上設計要領
（案定案）、平成8年8月。
6) 阪神高速道路公社：既設鋼製橋脚の耐震補強設計要領
（案）・同施工マニュアル（案）、1998年3月。
7) 名古屋高速道路公社保全部：既設鋼製橋脚の耐震補強要
領（案）、1997年9月。
8) 北田俊行, 迫田治行, 末尾圭一: 鉄筋コンクリート方
式で設計された鋼製橋脚定着部の
耐震強度について、鋼構造年次論文報告集、第6巻、日
本鋼構造協会、pp:221-228, 1998年11月。
9) 石田明, 山口隆裕, 伊田尚治: 橋脚の複合化による補
強とその耐震性能、コンクリート工学年次論文報告会,
Vol.21, No.1, 日本コンクリート工学協会、pp:409-414,
1999年6月。
10) 原崎伸, 井川博之, 西村宣男, 杉田文雄: 端素
素繊維強化樹脂板により補強された既設鋼製橋脚の
継返し載荷実験, 第56回年次学術講演会, I-A281,
pp:562-563, 2001年10月。
11) 日本道路協会：道路橋設計方書・同解説、I.通編、II.
鋼編、1996年10月。
12) CFルネンス協会：リベラーチ技術データ集、2000年
4月。

Experimental Study on Seismic Retrofitting Method for Existing Steel Bridge Piers
by Using Carbon Fiber Sheets

Masahide MATSUMURA, Toshiyuki KITADA, Hidenao HAYASHI, and Kazuaki TANI

A loading test is carried out for steel bridge pier models with rectangular cross section largely scaled down subjected to bending moment increasing in cyclic and constant axial compressive force in order to investigate the effect of retrofitting by carbon fiber sheets pasted on component steel stiffened plate panels of an existing steel bridge pier by epoxy resin upon its seismic performance. It is concluded that the retrofitting method can improve the ductility factor from about 4 to 5-6 with little load carrying capacity increment an existing the bridge pier retrofitted by the method. In the future, the bond characteristics between steel plate panels and carbon fiber sheets should be investigated both analytically and experimentally in detail to evaluate the effectiveness of this retrofitting method in precise.