A Study on Precast Slab with Rib

Fujinori WAKASHITA Mamoru SUGISAKI Teruo NARUSE

This report describes the results of the studies on the development of two types of slabs ① Match cast slab and ② Hybrid slab.

Match cast slab: It has been approximately 40 years since the precast slab was applied for a practical use. The precast slab, however, has not been used widely possibly because of the lack of the reliability of the joint structure. Accordingly, the dry joint system was applied, and the slab was featured with a rib along the joint in order to increase in the bending stress.

As a result, the rib assures to transmit the stress at the joint portion and to decrease the bending moment. Accordingly, the durability at the joint portion improves.

Hybrid slab: In terms of the practical use, there may arise a problem of working efficiency such that wider the bridge, the heavier the weight of the precast slab. Therefore, the present study is to propose a possible solution for the problem by means of designing the precast slab with hybrid structure.

The results of the load test on the slabs of ① and ② will be discussed.

key words: precast slab, match cast slab, hybrid slab, large span slab.
2. 研究の概要

1）リブ付きプレキャスト床版の適用対象

図2 マッチキャスト床版の目地構造

本研究を進めるにあたり、想定したのは、2主桁の長支間床版で、プレキャスト版幅1〜2.4m、版厚（リブ以外の一様部の版厚）23〜32cmである。

これは、2主桁に限らず広幅員の少数主桁構にも適用可能である。この場合でも基本的に、横軸方向に目地を設けることはなく、原則としてプレキャスト版の長さは、橋梁全幅とする。

また、前述したプレキャスト床版の構造的欠点を補う目的で、目地溝にコンクリートを打設をしない、マッチキャスト床版と、架設時重量（プレキャスト床版1枚当たりの重量）を軽減させるハイブリッド床版について考察する。

2）構造の概要

マッチキャスト床版

マッチキャスト床版の目地溝構造は、ドライ目地構造とする。従って、目地溝では、横軸方向鉄筋（配筋筋）は設けていない。また、目地溝には、せん断キーを設けて、隣接プレキャスト版同士をマッチキャスト・システムにて製作する。

目地溝は接着剂で繋ぐため、主として曲げ強度を増す目的で、目地に沿った版端下方にリブを設け、目地部の版厚を増している。

また、模様方向にプレストレスを導入してリブを互いに圧着することにより、目地部における応力、とくに曲げ応力の伝達性能を向上させている。

完成した床版において、目地部のリブは、鋼床版における横リブと似た機構を持ち、床版は異方性版（LxLy）を形成する。その結果、床版の主軸筋方向（横軸直角方向）の曲げモーメントMxは、等方性の場合より減少し、逆に、配筋筋方向（横軸方向）の曲げモーメントMyは、等方性の場合より増大することが判る。

図3は、両辺単純支持無限連続床の集中荷重による曲げモーメントを計算したものである。版厚、リブの寸法、リブの隔間は、Type-Iと同じ値を使用している。この結果より、リブを設置することにより、目地部の応力伝達をより確実にするとともに、目地部に作用する曲げモーメントを減少させる。

a) マッチキャスト版の製作

目地溝に寸法精度を確保することが、マッチキャスト・システムのポイントとなる。

プレキャスト版製作に際し、型枠の連続使用では、期待する精度は得られにくいと考え、プレキャスト版の半数を先行製作する。その場合、型枠として、隣接版のコンクリートを打設する方法を採用した。目地部の施工は接着剤使用によるドライ目地方式となっている。

b) プレスプレッシング

マッチキャスト・システムにて製作したプレキャスト版を繰採揚（横軸方向）する。プレストレス導入量は、目地溝20kg/cm²以上とする。

リブを設けたことにより、Mx（模様直角方向の曲げモーメント）は増大するが、それ以上に、x方向の曲げ剛性も増加する。そのため、繰採揚プレストレスを少なくても長支間の床版に対応が可能となる。

ハイブリッド床版

長支間対応のプレキャスト版は、重量が大きくなり、作業性に問題が生じる可能性が出てきた。そこで、プレキャスト版2層にすることで、その問題の解決を計ろうとするのが、この提案である。

a）構造の概要

厚さ10cmのリブ付きプレキャスト版を製作する。このプレキャスト版を型枠として、13cm（リブ部以外の一般部）のコンクリートを打設して、ハイブリッド床版を製作する。このことで架設現場における作業性の向上を計り、目地部は、リブにより補強された床版である。

3. 静的実験

この一連の実験は、1996年2月より日本大学理工学部構造工学大型実験棟にて実施した。図4

実験の目的は、目地部の強度と性能の確認をすることであり、比較のためにType0-0（リブなしRC床版）につ

図3 支間～曲げモーメント関係
図-5 マッチキャスト床版形状図

_port_に接着剤を塗布して組み合わせ、プレストレスを導入して、支間長4mの供試体を製作した。

供試体は、別表に示す5種類のマッチキャスト床版を製作した。

コンクリートの圧縮強度は、500kgf/cm²で蒸気養生で製造した。鉄筋はSD295A D16、PC鋼線は8種1号φ25を使用した。

接着剤は、日本シーナ製製のエポキシ樹脂ベースプレット法用接着剤、シーガレアWで、常温材質7日基準強度は、圧縮が750kgf/cm²、引張りが220kgf/cm²のものを使用した。

ハイブリッド床版は、幅1m、長さ2m、版厚10cm、コンクリート圧縮強度600kgf/cm²の型枠部分を製作し、こ

<table>
<thead>
<tr>
<th>床版形式</th>
<th>コンクリート強度</th>
<th>プレストレス量</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type0-0</td>
<td>R C 500 kg/cm²</td>
<td>120 tf e=0mm</td>
<td></td>
</tr>
<tr>
<td>Type0</td>
<td>マッチキャスト 500 kg/cm²</td>
<td>120 tf e=50mm</td>
<td>リブ高100 mm</td>
</tr>
<tr>
<td>Type1</td>
<td>マッチキャスト 500 kg/cm²</td>
<td>120 tf e=50mm</td>
<td>リブ高100 mm</td>
</tr>
<tr>
<td>Type1-1</td>
<td>マッチキャスト 500 kg/cm²</td>
<td>28 tf e=139mm</td>
<td>リブ高100 mm</td>
</tr>
<tr>
<td>Type2</td>
<td>マッチキャスト 500 kg/cm²</td>
<td>80 tf e=50mm</td>
<td>リブ高100 mm</td>
</tr>
<tr>
<td>Type3</td>
<td>マッチキャスト 500 kg/cm²</td>
<td>20 tf e=139mm</td>
<td></td>
</tr>
<tr>
<td>Type4-0</td>
<td>ハイブリット 300 kg/cm²</td>
<td>下床版厚100 mm</td>
<td></td>
</tr>
<tr>
<td>Type4</td>
<td>ハイブリッド 400 kg/cm²</td>
<td>下床版厚100 mm</td>
<td></td>
</tr>
<tr>
<td>Type5</td>
<td>ハイブリット 400 kg/cm²</td>
<td>下床版厚100 mm</td>
<td></td>
</tr>
</tbody>
</table>

表-1 Type別床版諸元
の段階で、上層に打設するコンクリートとの一体化を完全なものにするため、横軸直角方向に、スリット状のせん断キーを設けた。

この型枠を利用して、上層にコンクリート圧縮強度400kgf/cm²のコンクリートを13cm打設した。使用鉄筋は、マッチキャスト床版と同じものである。

図-6と表-1に示した各供試体の特徴を示すと、次のようになる。
Type0-0：リブなしの通常の場所打ちRC床版。供試体全長、一体打設し製作する。供試体支間方向鉄筋（配力筋）は、全長を貫通している。
Type0：リブのない通常のプレキャスト床版。鉄筋は、目地部を貫通していない。
Type1：リブ付きプレキャスト床版でプレストレスは端中央部分で中締めとしている。
Type1-1：Type1の改良型。Type1の載荷試験で、リブ端部より、ひび割れが認められた部分、隅角部にRを付け、鉄筋配置等の細部を改善している。
Type2：プレストレスを外ケーブルとした。
Type3：プレストレスの導入を2段にした、中締め、外ケーブルの併用を試みた。
Type4-0：リブなしのRC床版を2層にコンクリート打設し、ハイブリッド床版としている。供試体支間方向鉄筋は、全長を貫通している。
Type4：リブ付きハイブリッド床版。型枠プレキャスト版の鉄筋は、目地部を貫通していない。
Type5：Type4の改良型。型枠プレキャスト版のコンクリート圧縮強度を上げている。

2）測定対象
各供試体とも、研究目的に合せて支間中央部の目地に着目して、静載荷試験により、その挙動を検証した。
マッチキャスト床版においては、プレストレスによる目地部の軸応力分布、鉛直荷重による目地部の曲げ応力の分布をそれぞれに測定した。また、目地の割れ発生挙
動およびリブ背面の隅角部の割れ発生挙動を観察した。ハイブリッド床版においても、主としてリブ部の枠構造から、上層版への割れ発生等について、その挙動を観察した。

3）試験結果と考察

各供試体の荷重と、たわみの関係を、マッチキャスト床版、ハイブリッド床版について示す。

リブ付き供試体のたわみ剛性が高いのは、リブの存在により、床版の換算平均厚が増大したためと考えられる。Type2のたわみが進行が早いためはプレストレス量を抑えたためである。Type1-1は、リブの隅角部にRを付けた関係で割れの発生は少なかった。また破壊荷重では、27.8tで最終の破壊形状は、目地に縦一方向コンクリートの圧壊であった。耐力が低い理由は、リブの効果と考えられる。

また、マッチキャスト床版は、目地部において無筋状態となり、上筋、下筋共に不連続な部分が生じる。鉄筋応力が目地部を介して適切に伝達されているかを確認したのが図-8である。

試験載荷時の上筋、下筋に生じる荷重ひずみ分布を観ると、多少のばらつきはあるものの、理論値と同様の傾向を示していることが判る。

図10に示すように、実験値は理論値に近い性状を示していることが判った。

ハイブリッド床版では、図11に示すように、実験結果より、リブの有効性が確認された。

動的実験

Type1-1の供試体中央部2cmを利用し、定点載荷による動的実験を日本大学理工学部建築台校舎実験室にて行った。

実験概要と供試体を図13に示す。結果的には100万回を超える載荷実験後も、目地部に異常は認め

図-9 ハイブリッド床版たわみ図

図-10 コンクリートひずみ分布

No.2断面Sサイクル3載荷（残留ひずみなし）

図-11 ハイブリッド床版コンクリートひずみ分布
4. 結論

以上述べたことは、主として静的実験によるものであるが、本実験を通じて、次の結論を得られた。
①リブ付きでプレストレスされたマッチキャスト法種類の供試体は、リブなしのプレキャスト床版に比べて、耐荷力、曲げ剛性ともに大きいことが判った。
②外ケーブルタイプは、プレストレス量の関係で、中継供試体に比べて耐荷力、曲げ剛性ともに小さかった。
③外側、中継より外側の供試体と中継供試体との間に大きな差異は認められなかった。

全般的にみて、プレストレスされたリブ付きマッチキャスト床版の目地部は、無筋状態であるにもかかわらず、応力が適切に伝達されていることが判った。
④リブなしRC床版(タイプ0~0)とハイブリッド床版(タイプ4~0)の挙動は、鉄筋の応力状況をもとめ似ており、二層構造の信頼性が確認された。
⑤ハイブリッド床版の目地部においてもリブが有効に働いており、リブ付きハイブリッド床版の有効性が確認された。

今後さらに、実用化に向けて研究を進める予定である。

謝辞

本研究を進めるにあたり、御支援を賜わたった石川島播磨重工業㈱、供試体製作に御協力下さった石川島建材工業㈱に厚く感謝を表する。

[参考文献]
1) 若下・成願: リブ付きプレキャスト床版の目地強度の研究 原稿と基礎 vol. 31 No. 7
3) 西川: ハイブリッドシステム構造を最小にするミニマムメンテンナンス構の提案, 構架と基礎 vol. 27 No. 8
4) 鳥海他: マッチキャスト床版による施工の合理化, 構架と基礎 vol. 27 No. 8
5) 若下他: マッチキャスト工法を用いたリブ付きプレキャスト床版の目地構造, 土木学会年講 51 回